

Encoding Interface

Wei-Ming Yao (LBNL)

- Introduction
- •Reference
- Add measurements
 - Best limit or not
 - Add new measurement
 - Add measurement with br adjust rescaling
- Toolbox
 - Creating new decay and Branching ratio
- •Sign-off

Contact: send email to pdg-feedback-workspace@pdg.lbl.gov

Introduction

- *Starting point for PDG collaborators, login in
- https://pdgprod.lbl.gov/PdgWorkspace and encoding instructions at pdgprod.lbl.gov/twiki/bin/view/Pdg/PdgEncodingInstructions
- •Each person requires a login via their email address used by PDG
- Encoding procedures: (Recap for new users)
 - Go to pdg.lbl.gov, Click "About PDG" and "Encode Tools" or go direct to
 - Click "Particle Listings under Revision" to find list of particles
 - For example, click "Bottom Mesons" to find list of B mesons
 - Click B⁺ S041.pdf and on right side of pages: listed node names and DESIG
 - Each decay has DESIG=xx number to be ordered in list
 - Each node has unique name on right side: S041S95
 - See next page for examples.
 - Useful to identify the node name and desig code before encoding.

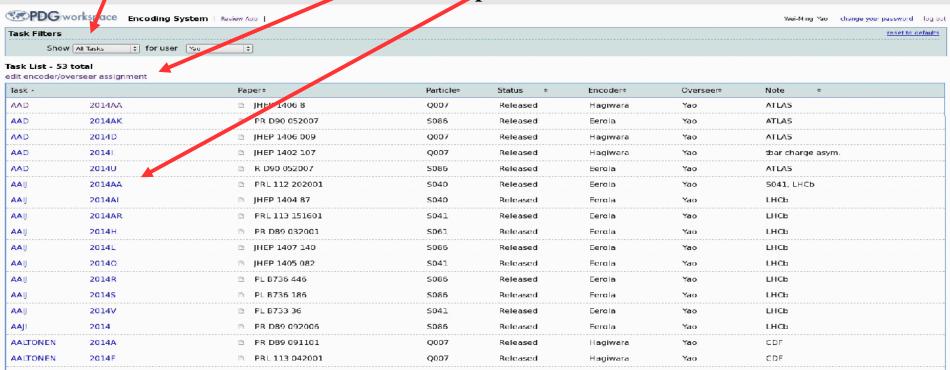
Data Listing

•Decay Modes are located via **DESIG** and each branching ratio has **Node name**

\Gamm is dynamic generated not useful								
\perp	Mode	Scale factor/ Fraction (Γ_i/Γ) Confidence level						
Ţ	Semilep	NODE=S0 1;CLUMP=A						
I 1	$\ell^+ u_\ell$ anything	[a] (10.99 ± 0.28) %	DESIG=220					
Γ_2	$e^+ \nu_e X_c$	$(10.8 \pm 0.4)\%$	DESIG=473					
Γ_3	$D\ell^+ u_\ell$ anything	$(9.8 \pm 0.7)\%$	DESIG=4 <mark>8</mark> 5					
Γ_4	$\overline{D}{}^0\ell^+ u_\ell$	[a] $(2.27 \pm 0.11)\%$	DESIG=145					
Γ_5	$\overline{D}{}^0 au^+ u_ au$	$(7.7 \pm 2.5) \times 10^{-3}$	DESIG=498					
Γ ₂ Γ ₃ Γ ₄ Γ ₅ Γ ₆ Γ ₇	$\overline{D}^*(2007)^0 \ell^+ \nu_{\ell}$	[a] (5.69 ± 0.19)%	DESIG=146					
Γ_7	$ \overline{D}^*(2007)^0 \tau^+ \nu_{\tau} \\ D^- \pi^+ \ell^+ \nu_{\ell} $	$(1.88 \pm 0.20)\%$	DESIG=499					
Γ ₈	$D^-\pi^+\ell^+\nu_\ell$	$(4.2 \pm 0.5) \times 10^{-3}$	DESIG=418					
	<u> </u>							

Indent means sub-decay channel

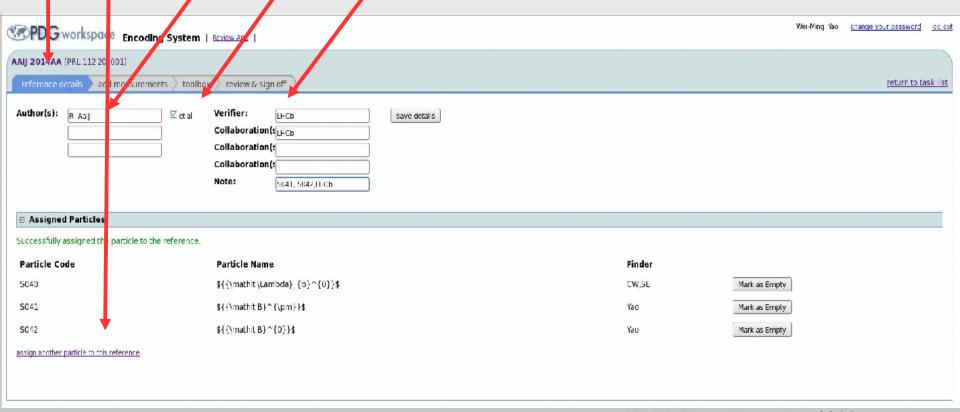
macht macht dab c	locay chamici							
$\Gamma(\overline{D}{}^0 au^+ u_{m{ au}})/\Gamma_{ m total}$			Γ ₅ /Γ		NODE=S041C01			
VALUE (units 10^{-2})	DOCUMENT ID	TECN	COMMENT		NODE=S041C01			
$0.77 \pm 0.22 \pm 0.12$	¹ BOZEK	10 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$					
 ◆ • We do not use the following data for averages, fits, limits, etc. ◆ • 								
$0.67 \pm 0.37 \pm 0.13$	² AUBERT	08N BABR	Repl. by AUBERT 09s					
1 Assumes equal production o 2 Uses a fully reconstructed B	NODE=S041C01;LINKAGE=EP NODE=S041C01;LINKAGE=AU							
$\Gamma(\overline{D}{}^0 au^+ u_ au)/\Gamma(\overline{D}{}^0\ell^+ u_\ell)$		NODE=\$041C52						
VALUE	DOCUMENT ID	TECN	COMMENT	_	NODE=S041C52			
$0.429 \pm 0.082 \pm 0.052$	1,2 LEES	12D BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$					
 ◆ • We do not use the following data for averages, fits, limits, etc. • • • 								
$0.314 \pm 0.170 \pm 0.049$	¹ AUBERT	09s BABR	Repl. by LEES 12D					
1 Uses a fully reconstructed 2	NODE=S041C52;LINKAGE=AU							
2 Uses $ au^+ ightarrow \ e^+ u_e \overline{ u}_{ au}$ and 2	NODE=S041C52;LINKAGE=LE							



Encoding

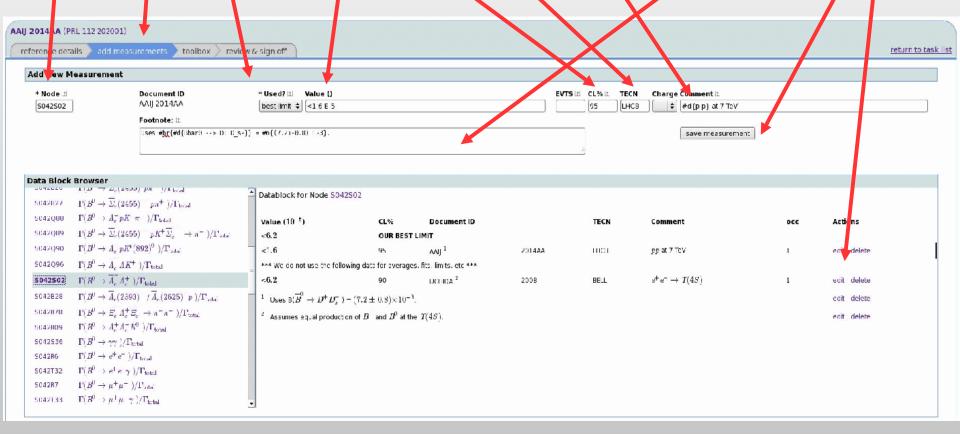
Each person requires login to PdgWorkspace

- click "All tasks" to see list of assigned papers.
- If there are unsigned papers, click "edit encoder/overseer assignments" to claim your papers to be encoded
- To encode AAIJ 2014AA for example



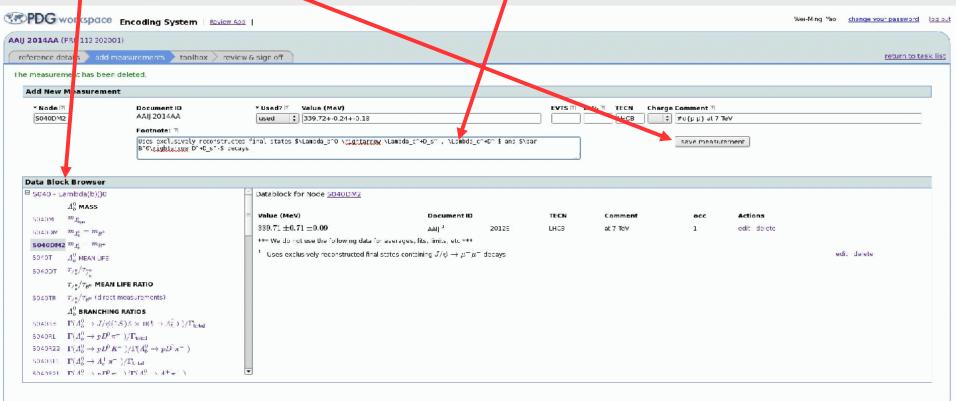
Add Reference

- Click "Add reference"
- Filling first author name eval, Verifier, Collaboration, Note
- •Click "assign another particle to the reference if there is more, then click task list to assign the extra assigned particles to the corresponding encoder/overseer.



Add Best Limit

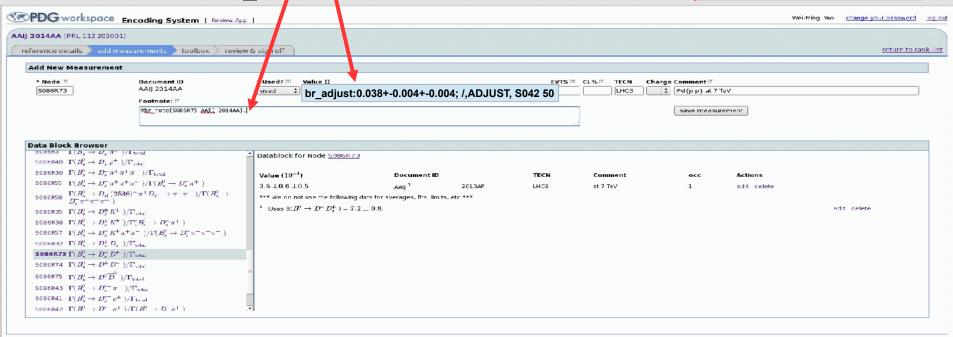
- Click "Add measurement": Node=S042S02 (B0->\Lambda_c^+\Lambda_c^-)
- •Filling Node, Best Limit, Value, CL, TECH, Comments, footnote, then "save"
- •If the measurement is the best limit, we have to edit existing one, set "not used".



Add Measurment

Look up the corresponding node from the full data listing (s041.pdf or s042.pdf), which is more efficient when there are couple hundred decays or <u>Data Block Browsers below.</u>

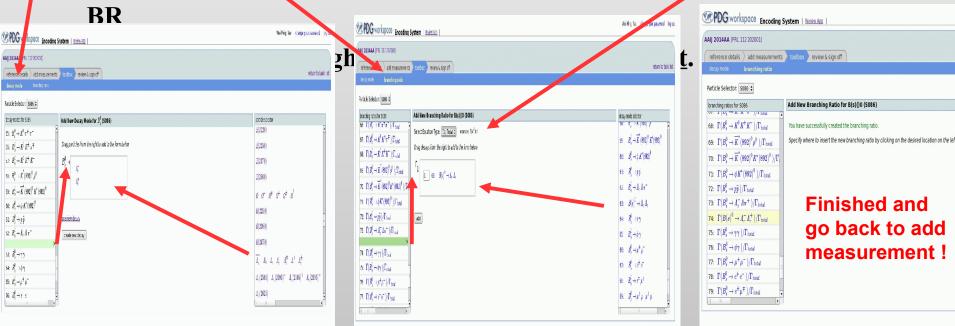
*Do encoding below and save. Using latex for footnote and comment is acceptable.



Add Measurement with br_adjust

- •Some case, a ratio of branching ratio is measured, for example, $B(Bs \rightarrow D+Ds-)/B(B0 \rightarrow D+Ds-)=0.038+-0.004+-0.003$.
- •PDG uses br_adjust to rescale B(Bs \rightarrow D+Ds-) properly when the value of B(B0 \rightarrow D+Ds-) could change in future. The syntax are below: DESIG for B0 \rightarrow D+Ds-
 - Measurement: <u>br_adjust:0.038+-0.004+-0.003; /, ADJUST, S042 50</u>
 - Footnote: <u>#br_note</u>{S086R73 AAIJ 2014AA}

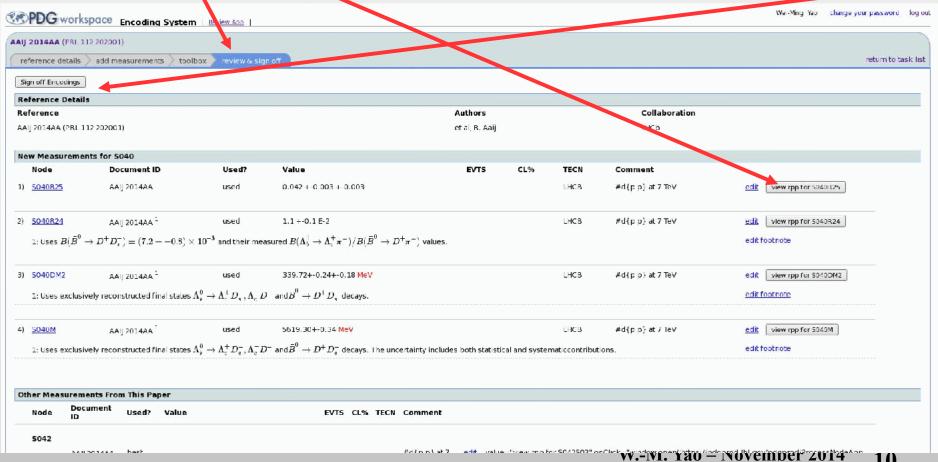
/ for ratio; * for product



Create new Decay and Branching Ratios

- •Creating new decay is not recommended for B+, and B0 (ask overseer and Piotr for i).
 - Select particle, browser list decays locating where to put new decay.
 - Drag particles on the right box to form the decay chain and save it
- •Creating Branch rations:

Browser Branching ratios node to locate where to put and decide ratio or



Review to Sign off

- •Click "Review to sign off" will show you all the encoding for the paper so far
- •Click "review RPP" shows pdf file and edit to correcting any mistakes
- •Be careful: measurement used or not, add comments "Repl. By ...". final sign off

Word of Caution

- •Some parts of encoding are still not working friendly
- •About half of encoders and overseers have used the new system for RPP2014
- •We encourage every encoder to try out the new system early, do not wait for the last mintues.
- •It will take you some time in the beginning, but let us know if you have any problems.
- Once familiar with the system, the encoding efficiency will improve.